home *** CD-ROM | disk | FTP | other *** search
- " x PN(x) abs(error)
- "
- -12.73 .0
- -12.72 .0
- "
- -9.01327 1E-19
- -7.34880 1E-13
- "
- -6.70602 1E-11
- -5.99781 1E-09
- -5.19934 1E-07
- -4.75342 1E-06
- -4.26489 1E-05
- -3.71902 1E-04
- "
- " The values computed for PN(x), with x very small, are
- " compared with tabulated values of PN(-x) = QN(x) in The
- " Handbook of Mathematical Functions [HMF: Table 26.6].
- " Errors within 1E-5 are usually quite acceptable. Note
- " the very high relative errors out beyond -6.0, however.
- / z PN(x) abs(error)
- "
- -0.14 .4443299952
- -0.02 .4920216863
- -0.00251 .499
- "
- -3.647656264E-11 .499999999999
- -3.647514842E-11 .5 {-2.579182479E-11 * sqrt2}
- 0.0 .5
- 3.647514842E-11 .5
- 3.647656264E-11 .500000000001
- "
- 0.00251 .501
- 0.02 .5079783137169
- 0.14 .5556700048059
- "
- " Midrange values, near .5, check on the smoothness of
- " the crossover from negative to positive values of x.
- " Test values are from [HMF:Table 26.1] and ERFT1.PAS.
- / x PN(x) abs(error)
- "
- 2.32635 .99
- 3.09023 .999
- 3.71902 .9999
- 4.26489 .99999
- 4.75342 .999999
- 5.19934 .9999999
- 5.61200 .99999999
- 5.99781 .999999999
- 6.36134 .9999999999
- 6.70602 .99999999999
- 7.03448 .999999999999
- "
- " Near the tail, as PN(x) approaches 1.0, values of 1-QN(x)
- " from [HMF: Table 26.6] are used to see how well PN(x) does
- " despite adjustments by 1.0 within the PN procedure.
- "
- "PNT1> End of test.